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A general procedure is developed to calculate a phase transformation consistently. 
The differential forms of the equations constraining a binary mixture to be in equilibrium 
are inverted to obtain volume and internal energy as independent variables. The set of 
finite difference equations may be incorporated into a general purpose continuum 
mechanics program. 

INTRODUCTION 

The local thermodynamic variables of a material that are related most directly 
to the partial differential equations of continuum mechanics are pressure, volume, 
and internal energy. In finite difference methods of the von Neumann-Richtmyer 
[l] type, volume and internal energy must be the independent variables in the 
equation of state calculation, and pressure must be calculated from them. However, 
in the case of mixed phases the formulation of such an equation of state is com- 
plicated by constraints of equilibrium between the phases. The constraints of equal 
pressure and temperature in the two phases for given values of volume and internal 
energy form a set of simultaneous equations. The differential forms of the constraint 
equations may be solved more easily, since they are linear in the differentials. 
Therefore, a numerical integration procedure based on derivatives of the equation 
of state (specifically, second derivatives of a thermodynamic potential) will be 
developed. Increments of pressure and temperature will be calculated from given 
increments of volume and internal energy. The procedure may be incorporated 
into a general purpose continuum mechanics program. The molar Gibbs potential 
of each phase will be integrated numerically, in order to treat the phase transforma- 
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tion consistently. The procedure is thermodynamically consistent if the properties 
of each phase are consistent. Although a solid-solid phase transition is discussed, 
the method is also applicable to liquid and vapor. 

1. MIXED PHASES 

The assumptions to be made here regarding a mixture of phases will be identical 
to those of previous work [2,3]. The material is assumed to be composed of small 
grains or crystallites, each of which is a pure phase. It is assumed that each grain is 
in a thermodynamic equilibrium state at each instant, regardless of whether the 
mixture is in equilibrium. It is assumed that each grain contains a large number of 
molecules, so that surface effects are not important, but that the grains are small 
enough that the material may be considered locally homogeneous on a macroscopic 
scale. At each point in the material the local macroscopic mass fraction of a phase 
is defined as the mass fraction of that phase in a neighborhood containing a large 
number of grains. Local values of molar volume and other extensive variables per 
mole or unit mass are defined by similar averages. It is assumed that the grains are 
small enough that pressure and temperature equilibrate to uniform values in each 
locality at much faster rates than any other rates of interest. In the case of a finite 
transformation rate the local composition may not be in equilibrium. In a mixture 
of phases in equilibrium the molar Gibbs potential of the two phases must be equal. 
If only a single phase exists, it is the phase with the smaller molar Gibbs potential 
at that pressure and temperature. 

Let the mass fraction of the second phase be denoted by X. Then the mass 
fraction of the first phase is (1 - x). The molar volume of the mixture is 

(1.1) 

where V, and V, are the molar volumes of the first and second phases at the same 
pressure and temperature. The molar internal energy of the mixture is 

and similar equations hold for other extensive variables for one mole or one unit 
of mass. In all that follows extensive variables of the mixture will apply to one mole. 
An extensive variable of an individual phase will apply to one mole of that phase, 
not to one mole of the mixture. With these understandings, the adjective molar will 
be dropped from all of the following discussion. 

Due to the constraint that pressure and temperature are the same in the two 
phases of the mixture, these variables are the natural set of independent variables 
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to use when relating properties of the mixture to properties of the individual 
phases. As an example, consider derivatives of the volume of the mixture. 
Analogous equations hold for other extensive mixture variables. The differential 
of Eq. (1.1) is 

fib’- (I - x)dV, + XdV, + (V, - V,)dx, (1.3) 

where the differentials dV, and dV, satisfy the constraint that pressure and tem- 
perature differentials are the same in the two phases. Partial derivatives of volume 
at constant composition are 

aV i-1 ap T.3: 
= (1 - x,(g), + x ($), 

and 
aV f-1 aT P.X 

= (1 - X$$), + X i&$,, . 

U-4) 

(1.5) 

Note that derivatives for the frozen mixture can be written as weighted averages 
of derivatives for the constituents, if pressure and temperature are the independent 
variables, but not if other variables are independent. 

Determination of the mixture properties is most direct if pressure and tempera- 
ture are the independent variables. Therefore, the properties of the individual 
phases should be available in the Gibbs representation. It will be assumed that 
subroutines have been written for each phase to calculate isothermal bulk modulus 
kT, heat capacity at constant pressure C, , and volume thermal expansivity 01. 
These quantities are related simply to the second derivatives of the Gibbs potential: 

a2G 
- = - V/k, , 
ap2 

a2G 
- = -C,IT, 
aT2 

(1.6) 

U-7) 

The requirement of thermodynamic consistency is equivalent to compatibility of 
these derivatives. A generalized model that is consistent has been presented 
elsewhere [4]. Any model based on statistical mechanical considerations will be in 
the Helmholtz representation with volume and temperature as independent 
variables. Therefore, it will be assumed that the inputs to the lower level sub- 
routines are temperature and volume of each phase, even though the output is in 
the Gibbs representation. 
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2. PHASES IN EQUILIBRIUM 

In this section a general procedure will be developed to determine all thermo- 
dynamic variables for given increments of volume and internal energy. The proce- 
dure may be used as an element of a procedure to calculate adiabats and as an 
element of a general wave propagation program. The thermodynamic equations 
would appear more elegant if entropy rather than internal energy were chosen as 
an independent variable. Internal energy is chosen in order to make a 
straightforward and general connection with the equations of continuum 
mechanics. 

Calculation for General Volume and Energy Increments 

In the V-E plane, unlike the P-T plane, phases may coexist in a band with a 
finite width. All variables change continuously through this band. In a process 
that traverses this band, pressure and temperature need not be constant. The 
calculational procedure to be developed for the mixed phase region may also be 
used in the single phase regions if it is required that the mass fraction of each phase 
cannot be less than zero nor greater than one. 

The first step of the procedure is to evaluate derivatives of volume and internal 
energy of the individual phases with respect to pressure and temperature. These are 

i ) 
3 
ap T= - Vi/h , 

i ) 
av, 

aT P 
= Viai 3 

i 1 
3 
ap T= -P ($$ - T(g), , 

i 1 
3 
ar p= 

where the subscript i takes the values 1 and 2 for the first and second phases. 
The next step is to form derivatives for the frozen mixture: 

av 
i-1 , = (1 - 4($$,, + x (gg) , 

(g);; = (1 -x)(S), + x (S)l, 

aE 
H ap T.x 

= (1 - &g), + x ($), , 

aE 
c-1 aT p,s 

= (1 - x)(Z,, + x ($), . 

(2.2) 

(2.3) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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Only three of these derivatives are independent, but the following substitutions 
will be more straightforward if all four derivatives are evaluated. 

The three equations to be satisfied by equilibrium states in the mixed phase 
region are 

If = (1 - -4 Vl(P, T) + x V,(P, T), (2.9) 

E = (1 - x) Edf’, T) + xE,(P, T), (2.10) 

0 = G,(P, T) - G,(P, T). (2.11) 

For given values of I’ and E these equations are to be solved for x, P, and T. In the 
case of arbitrary equations of state the differential forms of these equations may 
be solved by a general numerical procedure more easily than the equations them- 
selves. The differential forms of Eqs. (2.9), (2.10), and (2.11) are 

dv = (g,, 2 dP + (s),,z dT + (vz - v,) dx, 

dE = (g)r I dP + (g),,, dT + (4 - 4) dx, 

(2.12) 

(2.13) 

d(G, - G,) = (I’, - V,) dP - (57, - S,) dT. (2.14) 

Equations (2.12) and (2.13) are the same as Eqs. (3.14) and (3.15) of Ref. [2]. 
Define Gzl = G, - Gr . For mixed phases in equilibrium, dGzl = 0. In the 
following paragraphs dG,, may be arbitrary so that the relations may also be 
applied in the case of a finite transformation rate. 

Let ZZ’ indicate the column matrix with elements V, E, and G,, . Let g be the 
column matrix with elements P, T, and X. Let 9I be the square matrix of the 
coefficients of Eqs. (2.12), (2.13), and (2.14). Then the equations above may be 
written in the compact form 

dZZ’=9ld%f. (2.15) 

The problem is to solve for d?Y for given d&Y. The inverse of the matrix must be 
calculated. Then 

d+V = 2l-l de??‘. (2.16) 

The solution for dP and dT will be examined more explicitly. Suppose that the 
differential of the mass fraction dx has already been determined. Define 

and 
dV, = dV-- (V, - V,)dx (2.17) 

dE, = dE - (E, - El) dx. (2.18) 
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Then the two remaining simultaneous equations to be solved for dP and dT are 

dV, = ($,, ~ dp + (g)p,z dT 

and 

d&c = ($)T a dP t (g),,, dT. (2.20) 

The matrix of coefficients on the right sides is to be inverted. The determinant of 
the matrix is the Jacobian of volume and internal energy with respect to pressure 
and temperature at constant composition. The elements of the inverse matrix may 
be found using properties of Jacobians [5]. Let J be the Jacobian 

a(V, El 
J = a(P, 71% * 

Then 

The solution for dP and dT is 

dP = (g), r df’z + (&dEz Y 

dT = (s), z dVz + (g),,. d-k - 

(2.21) 

(2.22) 

(2.25) 

(2.27) 

This solution for dP and dT is a subset of the solution of three simultaneous 
equations indicated by Eq. (2.16), if dx is determined from those equations. For 
arbitrary dx, Eqs. (2.26) and (2.27) give the solution satisfying the constraints of 
equal pressure and temperature in the two phases. 

Given states of the individual phases, the matrix a-l may be determined by a 
sequence of explicit substitutions, starting from Eq. (2.1). This sequence of sub- 
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stitutions may form an algorithm for numerical calculations. For numerical 
calculation, differentials are to be replaced by finite differences. Values of variables 
at the beginning of a step are indicated by the superscript o for old, values at the 
end of a step by an n for new, and values halfway through a step by h. The matrix 
$I-l is to be evaluated at the midpoint of the integration step, 

(91-1)h = W1(Th, Vlh, Vzh, Elh, Ezh, Slh, S,“). (2.28) 

In the finite difference analog of Eq. (2.16), dV is to be replaced by d V, and dE 
by AE. If both the beginning and the end of the step are in the mixed phase region, 
then G& and Ggr are both zero and AGzl is zero. Both this case and the case in 
which the step goes from a single phase region into the mixed phase region are 
accounted for by the more general expression 

AG,, = --Gil . (2.29) 

The case in which the step leaves the mixed phase region is accounted for by 
requiring that x be bounded by zero and one. The finite difference equations for 
AP, AT, and Ax are represented formally by 

Only Ax should be calculated from Eq. (2.30). If the new value of x lies outside 
either bound, it is set equal to that bounding value. If x is adjusted, then Eq. (2.30) 
does not hold. The adjusted value of Ax is used to determine AP and AT using 
finite difference analogs of Eqs. (2.17)-(2.27), which are valid for any Ax. This 
procedure is efficient, since the determinant (2.21) has already been evaluated as a 
cofactor of the determinant of ‘$I. By this procedure, the Gibbs potentials of the 
two phases are equal in the mixed phase region and become unequal in the single 
phase regions. The single phase that exists is automatically the phase with the 
smaller Gibbs potential, since use of Eq. (2.29) continually forces x in the direction 
of stability. 

After AP and AT are determined, increments of volume and internal energy of 
the individual phases may be found using derivatives that have already been 
evaluated, 

Av,=($$):AP+(z);AT, 

AE~ = ($): AP + (s),” AT. (2.32) 
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Here the subscript i takes the values 1 and 2 for the two individual phases. Then 
new values of the extensive variables of each phase are found by 

Vi” = vi0 + A vi ) (2.33) 

Ei” = Eio + AEi , (2.34) 

Sin = Si” + CiiAT/Th - VshaihAPy (2.35) 

Gin = G,’ - SihA T f vihAP. (2.36) 

Values appropriate to the midpoint of the step are taken to be averages of new and 
old values. Values of three variables for each phase, Vi , Si , and Ei or Gi , must 
be saved from the previous step and must be specified at the beginning of the 
integration. 

The centered finite difference equations developed here are accurate to second 
order. They are not explicit, for values of variables halfway through the step are 
needed to calculate the increments. A solution may be found by iteration. Old 
values of variables may be used to find a first approximation to the matrix (Ql-l)h. 
Then first approximations may be found for the increments and the new values of 
the unknown variables. Approximate values of variables at the midpoint of the 
step may be used to re-evaluate the matrix, and the procedure may be repeated. 
The iteration is done to get correct centering of the finite difference equations; it is 
not done to solve the set of simultaneous Eqs. (2.12)-(2.14). The solution of the 
latter is accomplished precisely within each iteration. 

The iteration has been described as if both A V and AE were prescribed before 
the integration step were taken. In applications to continuum mechanics A V will 
be determined from velocities by the equation of continuity, and will be tixed 
during the equation of state calculation. However, AE depends on the new value 
of pressure, for, in addition to other possible terms, it always contains the hydro- 
dynamic work. Therefore, the calculation of AE must be included within the 
equation of state iteration. Some special cases will be considered in the succeeding 
sections. 

Integration on an Zsentrope 

The centered finite difference equation for the internal energy increment on an 
adiabat is 

AE = --PhAv. (2.37) 

If the phases are required to be in equilibrium the adiabat should be an isentrope. 
The equation of state iteration consists of this equation followed by Eqs. (2.28)- 
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(2.36). In the first pass through the procedure, Ph on the right side of Eq. (2.37) is 
approximated by the old value of pressure. In succeeding iterations the currently 
available approximation is used. 

In order to test the convergence of the iteration, the finite difference equations 
were programmed and integrated on a computer. The calculations were done in 
single precision floating point on an IBM 360. Roundoff error for one operation is 
one part in 106. The equation of state parameters used in the test were reasonably 
representative of the alpha (bee) and the epsilon (hcp) phases of iron. The initial 
values were representative of the state at room temperature and zero pressure. The 
energy difference between the phases was representative, but did not fit the transi- 
tion pressure accurately. Three iterations were done in each step. 

The integrations started at a volume of 7.09264 cm3/mole. In the first test the 
volume increment was -0.01 cm3/mole for each integration step. Successive 
approximations to pressure in a step in the mixed phase region are shown in 
Table I. The values of pressure and volume calculated in the previous step are the 
zeroth approximation and are listed on the first line. The quantity SP listed in the 
last column is the difference between each approximation and the final value. In 
this case the calculation converges to the accuracy of the machine in one iteration. 

TABLE I 

Convergence of Pressure for fi V = -0.01 cm3/mole 

Iteration V 
Number (cm3/mole) 

P 
(megabar) 

SP 
(megabar) 

0 6.44264 0.1249712 -0.0000509 
1 6.43264 0.1250221 0 
2 6.43264 0.1250221 0 
3 6.43264 0.1250221 . . . 

In the second test the volume increment was 11 times larger, so that the relative 
volume step was about one part in 60. The mixed phase region was reached in the 
fourth step and the transition was complete in the eighth step. Successive approxi- 
mations to pressure in the sixth step are shown in Table II. The calculation con- 
verges to the level of roundoff error in two iterations. Successive values of 6P are 
consistent with a geometrically convergent sequence. The ratios of corresponding 
SP values in Table I and Table II suggest that the convergence factor is propor- 
tional to LIP’. The relative difference in pressure at the same volume in the two 
tests is about 6 x 10-5. 

In the mixed phase region the calculated molar Gibbs potentials are equal. The 
entropy of the mixture is constant within the roundoff error. The values of 
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TABLE II 

Convergence of Pressure for d V = -0.11 cm3/mole 

Iteration V 
Number (cm”/mole) 

P 
(megabar) 

SP 
(megabar) 

0 6.54264 0.1244478 -0.0005673 
1 6.43264 0.1250220 $0.0000069 
2 6.43264 0.1250152 +o.oOOoOo1 
3 6.43264 0.1250151 . . . 

V, , V, , El , and Ez are consistent with the values of V, E, and x according to 
Eqs. (2.9) and (2.10) within the roundoff error. In the interest of precise conservation 
of mass and energy a corrective procedure was used at first to force Eqs. (2.9) and 
(2.10) to hold precisely in each iteration. Values of d V, and d V, were adjusted 
while holding the ratio constant, and the same was done with the internal energies. 
The rate of convergence was the same with and without the corrective procedure. 
In the interest of simplicity it was abandoned. 

Effect of Shear Strength 

Up to this point we have considered the material to be a fluid. In the case of an 
elastic-plastic material, internal energy is a function of entropy and the strain 
tensor. A generalized Gibbs potential might be formed by Legendre transformations, 
replacing strain components as independent variables by stress components. Two 
phases in equilibrium in the same stress state would have equal generalized Gibbs 
potentials. Such a theoretical formulation is not justified in the real situation. If 
the grains of each phase have a finite strength, then a mixture of grains in stress 
equilibrium may not be in a uniform stress state. Local values of stress components 
might differ from the average or macroscopic values. Therefore, to avoid 
unwarranted complications, considerations of phase equilibrium will be based on 
the mean compressive stress, the pressure. 

It is assumed that pressure is independent of strain deviators, so that it is uniquely 
determined by temperature and volume. This assumption is valid for isotropic 
materials and for cubic crystals but not for hexagonal crystals. Since there is no 
volume change associated with plastic strain, yielding affects the pressure only 
indirectly, through an increase in thermal energy. 

Calculation of elastic-plastic behavior of stress deviators will follow Wilkins [6]. 
The internal energy increment should be recalculated in each iteration of the 
equation of state calculation. In an elastic-plastic material with viscosity it is given 
by the finite difference equation, 

dE=dZ-(Ph+Qh)dV, (2.38) 
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where LilZ is the work done against stress deviators in the time step and Q is the 
contribution to pressure from viscosity. In the case of uniaxial strain 

AZ = -shAV, (2.39) 

where sh is the stress deviator in the direction of compression halfway through the 
time step. The change of internal energy due to any form of heat transport could be 
accounted for by adding a term analogous to AZ in Eq. (2.38). The equation of 
state iteration consists of Eq. (2.38) followed by Eqs. (2.28H2.36). In each iteration 
the currently available approximation to Ph is used on the right side of Eq. (2.38). 

3. TIME-DEPENDENT PHASE TRANSFORMATION 

In this section a finite transformation rate will be considered. A calculational 
procedure for a time-dependent transformation will be developed and applied to 
the propagation of a nonsteady shock. 

Kinetics of the Phase Change 

The transformation rate will be treated according to linear irreversible thermo- 
dynamics [7]. Time will be represented by a lower case t, and the upper case will 
remain temperature. If no interaction between different irreversible processes is 
considered, then the time rate of change of the mass fraction of the second phase is 

dx 
-z-= --L(G, - GA, (3.1) 

where L is a positive constant [2]. 
For numerical calculation one could use a finite difference analog of Eq. (3.1) to 

determine dx from At and finite difference analogous of Eqs. (2.17)-(2.27) to 
determine AP and d T from LI V, AE, and Ax. Only the two equations constraining 
pressure and temperature to be the same in the phases for given volume and internal 
energy need be inverted. Therefore, the calculation would be simpler than in the 
case of equilibrium composition. 

However, some further analysis is necessary to describe the transition rate in 
terms of a relaxation time. The relaxation time is defined to be the time interval 
needed for the mixture to reach equilibrium composition if the transformation 
continued at its present instantaneous rate. It is necessary for accuracy in the 
finite difference calculation that the time step be much smaller than the relaxation 
time. The calculation might be unstable for time steps larger than the relaxation 
time. 

Consider a mixture of phases with given total volume and internal energy. 
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Define Gzl = Gz - G1 . The relation between a change in x and the corresponding 
change in G,, at constant volume and internal energy is 

(di)=q$)9 
(3.2) 

where 2I is the matrix of coefficients of Eqs. (2.12)-(2.14). The solution for dx is 

dx = & dG,, , (3.3) 

where J is the Jacobian defined in Eq. (2.21) and the denominator is the deter- 
minant of !X. If this linear relationship is used to approximate differences between 
the present state and equilibrium, then the equilibrium composition, Xeq , is given 
by 

xeq - x = (J/I QI I>(-Gd. (3.4) 

The differential equation for x in terms of a relaxation time T is 

dx = (xeq - X) dt/T, (3.5) 

and expressed in terms of the present state, it is 

dx = -(J/I ‘?I I) G,, dt/T. (3.4) 

The transformation rate given by Eq. (3.6) is proportional to -GG,, , just as it is in 
Eq. (3.1). By equating these two expressions, the relaxation time may be related 
to the rate constant L, 

7 = J/(1 2l j L). (3.7) 

The relaxation time may be found more directly by combining Eqs. (3.1) and 
(3.3) to obtain 

dG,, _ L 1 a 1 G -_-- 
dt J 21 * (3.8) 

Then the relaxation time may be identified as the quantity given in Eq. (3.7). 
If L is constant, then the relaxation time will be a function of pressure and 

temperature, for it depends on the states of the individual phases. In the case of the 
alpha-epsilon transition in iron, however, pressure and temperature vary only 
slightly on an adiabat or Hugoniot curve in the mixed phase region. Therefore, it 
is not a bad approximation to let T be constant. 

There is no unique definition of the relaxation time. It has been developed here 
by considering a hypothetical approach to equilibrium at constant volume and 
internal energy. If a different pair of variables were held constant, a different 
relaxation time would be found. According to linear irreversible thermodynamics, 
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the differential equation valid in any process is Eq. (3.1). A given value of L will 
correspond to different values of 7 in a given state for different definitions of 7. 

In order to describe the demonstration calculation to be done in the next section 
in terms of a relaxation time, Eq. (3.1) will not be used. There is no reason it could 
not be used, if care were taken to keep the time step small. Equation (3.6) with a 
constant T will be used. The justification is that Eq. (3.6) is equivalent to Eq. (3.1) 
with an approximately constant value of L. 

In the numerical calculational procedure dx is found from At using a finite 
difference analog of Eq. (3.6). The coefficient of At on the right side should be 
evaluated at the midpoint of the time step. Then AP and AT may be found from 
A V, AE, and Ax using finite difference analogous of Eqs. (2.17)--(2.27). An iteration 
is necessary to get proper centering of the finite difference equations. 

Nonsteady Shock Wave 

The scope of this paper is restricted to presenting a general calculational method; 
it is not intended to be a systematic study of shock-induced phase transitions. To 
demonstrate the applicability of the method, results of a single problem will be 
reported here. 

0.16 

” 0.2 0.4 0.b 

t (microsec) 

FIG. 1. Shock profiles near the impact surface. Longitudinal compressive stress is plotted 
as a function of time at points initially at 0.025 cm, 0.05 cm, 0.1 cm, and 0.15 cm from the impact 
surface. 
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The calculational procedure discussed above was incorporated into a general 
purpose finite difference computer program for continuum mechanics problems. 
The finite difference equations for continuum motion were of the von Neumann- 
Richtmyer type [l] with one space coordinate and time as independent variables. 

The material chosen for the problem is iron, which transforms from the alpha 
(bee) phase to the epsilon (hcp) phase at about 130 kilobars. In the model used, the 
volume change in the transition is -0.33 cm3/mole and the entropy change is 
2.22J/mole-deg on the room temperature isotherm. The entropy change is small 
compared to that in most phase transitions. The volume change and the entropy 
change have opposite signs, as in the ice-water transition. On the isentrope starting 
at standard conditions temperature decreases about 40 deg. in passing through the 
mixed phase region. 

The problem consists of a plane slab of iron initially at rest at standard 
conditions. Let X represent the spatial coordinate. The left surface of the slab, 
located initially at X = 0, was required to move to the right at a constant velocity 
of 0.05 cm/p sec. This boundary condition corresponds to a symmetric impact of 
two iron slabs at a relative velocity of 0.1 cm/p sec. The equation of state para- 

I 

0.16 - 

0.12 - 
;: 
2 
5 
t 

4: 0*03 

0.04 - 

0 1 2 

t (microsec) 

FIG. 2. Shock profiles farther from the impact surface. Longitudinal compressive stress is 
plotted as a function of time at points initially at 0.2 cm, 0.3 cm, 0.4 cm, 0.5 cm, and 0.6 cm 
from the impact surface. 
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meters were from work reported elsewhere [4]. A yield stress of 4.32 kilobars was 
used, and the relaxation time of the phase transition was chosen to be 0.1 psec. 
The time step was restricted so that the relative change of volume of any zone in a 
time step did not exceed one part in 64. A von Neumann artificial viscosity with a 
coefficient of 4.0 was used. 

In each time step, the equation of state iteration was performed four times for 
each zone. In the first pair of iterations the work done against stress deviators in 
that time step was ignored. The reason was to provide the capability of letting the 
shear modulus and yield stress depend on pressure and temperature even though 
constant values were used in this calculation. The running time of the program as a 
whole was eight times longer than with a simple equation of state calculation. If 
the stress deviator calculation were incorporated into the equation of state iteration, 
then only two iterations would be necessary to get second-order accuracy, and the 
calculation time could be cut roughly in half. 

To look at the early relaxation of the step wave input, a problem was run with 
the iron divided spatial zones 0.0025 cm thick. Plots were obtained of longitudinal 
compressive stress as a function of time in zones that were initially at the positions 

VOLUME -- 

LEFT SCALE 

6.5 - 

RIGHT SCALE 

0 I 2 

TIME (MICROSEC) 

340- 

TEMPERATURE 
I 

320- [DEG. Kl ENTROPY 

300- 

280- 
- 

0 2 
TItk (MICROSEC) 

FIG. 3. Volume, mass fraction, temperature, and entropy as a function of time at the point 
initially at 0.6 cm from the impact surface. 
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0.025, 0.05, 0.1, and 0.15 cm from the impact surface. These curves are shown in 
Fig. 1. As the iron relaxes toward the denser phase, its shock impedance decreases. 
Since the velocity at the boundary is held constant, pressure at points near the 
boundary decreases after the jump at the wavefront. The pressure jump at the 
wavefront decreases with increasing propagation distance and approaches the 
equilibrium transition pressure. The separation between the plastic and the transi- 
tion waves gradually becomes evident. The elastic precursor of 7.3 kilobars is also 
evident in the plots. 

To look at the approach of the transition wave to a steady profile, the problem 
was rerun for a longer time with zones 0.005 cm thick. Plots of longitudinal 
compressive stress as a function of time at points initially at 0.2, 0.3, 0.4, 0.5, and 
0.6 cm are shown in Fig. 2. 

Other thermodynamic variables at the point initially at 0.6 cm are plotted as a 
function of time in Fig. 3. At this point the transition wave has almost reached a 
steady state. Entropy increases in both the plastic and the transition waves, since 
the material goes through nonequilibrium states. When the transition begins 
temperature decreases initially, as it does in the isentropic case, and then increases 
due to the increase in entropy. 

The time scale of the problem is determined by the relaxation time of 0.1 psec. 
Results for a different relaxation time may be found by scaling both time and dis- 
tance by the same factor as the relaxation time. Stress, volume, and velocity will be 
the same at scaled space-time points. 
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